Semester II

Course Name: Electromagnetic Theory

Course code: PP2021

No.of hours per week	No. of credits	Total No .of hours	Marks	
6	4	90	100	

Objectives

1. To provide knowledge on the propagation of electromagnetic

radiation

2. To develop theoreticalknowledge, skillson solving analytical problem sinelectrom agnetism.

СО	Upon completion of this course, students will be able to	PSO addressed	CL
CO -1	Summarize the fundamental laws of electrodynamics based On Maxwell's equations.	PSO-1	U
CO -2	Enumerate the concept of energy in electrostatic and Magnetostatic fields.	PSO-2	K
CO -3	Illustrate the electrical properties of materials; solve the Wave equation as plane waves in source.	PSO-5	Ap
CO -4	Analyze the wav epolarization and reflection/transmission of Plane waves in homogenous media.	PSO-4	An

Teaching Plan

Credits: 4 &Test)

Total Hours: 90 (Incl. Seminar

Unit	Modu le	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Electros	tatics				
	1	Coulomb's law; the electric field – line, flux and Gauss's Law in differential form - theelectrostatic potential; conductors and insulators	4	Understand the concepts Electrostatic field and basicequations	PPT, Descripti ve lecture	Evaluation through: quiz, Problem

	2	Gauss's law - application of Gauss's law -curl of E - Poisson's equation;	3	To understand the divergence and curl	Illustrati on,	solving
		Laplace's equation		of E and its applications	Descripti ve lecture	Descriptive
	3	work and energy in electrostatics – energy of a point charge distribution – energy of continuous charge distribution – inducedcharges – capacitors.	4	Understand the basic concept of energy of a point charge and continuous charge distribution	Videos, group discussion	short questions
	4	Potentials: Laplace equation in one dimension and two dimensions –Dielectrics – induceddipoles– Gauss'sLawinthepresence ofdielectrics.	4	Solve solution of Laplace's equation in one and two dimension and understand the electric fields conductors and dielectrics	Semin ar, Lectur e	Formative assessment (I CIA)
II	Magneto	ostatics				
	1	Lorentz force – magnetic fields – magnetic forces – currents – Biot-Savart Law – divergenceand curl of B	4	Understand the concept of magnetic fields, Biotsavart's law for a	PPT Illustrati on, Descripti ve	Evaluation through: quiz,
				line current	lecture	
	2	Ampere's Law – Electromagnetic induction - comparison of magnetostaticsand electrostatics –	4	To acquire knowledge on ampere's law and magnetic vector potential	Lecture ,Videos	short questions Descriptive answers
	3	Magnetic vector potential- Magnetization: effect of magnetic field onatomicorbit–	4	To understand the effect of magnetic field on atomic orbit	Descripti ve lecture	Problem solving Formative
	4	Ampere'sLawin magnetizedmaterials– ferromagnetism.	3	Understand the ampere's law in magnetized materials	Descripti ve lecture, seminar	assessment (I&II CIA)

III	Electrom	notiveForce				
	1	Ohm's Law – electromotive force – motional emf – Faraday's Law –	4	Understand t	Illustrati on, Descripti ve lecture	Evaluation through: quiz,
	2	induced electric field –inductance– energyinmagneticfield Maxwell'sequationinfreespacean	3	Solve the Maxwell's	Descripti	short questions Descriptive
		dlinearisotrophicmedia– continuityequation – Poyntingtheorem.		equations and pointing theorem	ve lecture	answers Formative assessment
	4	Waves in one dimension – wave equation – sinusoidalwaves – reflectionandtransmission– Polarization.	4	Solve the wave equation. Reflection, transmission and polarization	Group Discussi on, Lecture, seminar	(I CIA)
IV	Electrom	agneticWaves	1			
	1	The wave equation for E and B – Monochromatic Plan waves – energy and momentum inelectromagnetic waves–	5	UnderstandtheWaveequation,energy for E and B.Explaintheelectromagneticwaves in matter	PPT Illustrati on, Descripti ve lecture.	Evaluation through quiz, Descriptive
	2	electromagnetic waves in matters -TE waves in rectangular waveguides – the co-axial transmission line	5	Explain in brief the reflection and transmission at normal incidence and oblique incidence	Lectur e, Group discussi on	answers short questions Assignment
	3	Potentials: potentials and fields – scalar and vectorpotentials – Gauge transformation – Coulomb Gauge and Lorentz Gauge – Lorentz force lawinpotentialform.	5	Understand the concept of Coulomb gauge and Lorentz gauge	Lectu re, semin ar	Formative assessment (II CIA)

V	Applicat	ion of Electromagnetic Waves				
	1	Boundary conditions at the surface of discontinuity – Reflection and refraction of E.M wavesat the interface of non – Conducting media	4	Understand the concept of four vectors, Minkowski force	PPT Illustrati on, Descripti ve lecture	Evaluation through: quiz, short questions
	2	Kinematic and dynamic properties – Fresnel'sequation – Electric field vector 'E' parallel to the plane of incidence and perpendicular to theplane of incidence Reflection and transmission co-	4	To acquire knowledge on the Maxwell's equations in four vector form. To acquire	Descripti ve lecture Descripti	Descriptive answers Problem solving
		efficients at the interface between twonon–Conductingmedia		knowledge on theLagrangianand Hamiltonian force equations	ve lecture, Seminar, Assignmen t	Formative assessment (II CIA)
	4	Brewster'slawanddegreeofpolariz ation–Totalinternalreflection.	3	Understand the brewster's law and degree of polarization	Illustrati on, Descripti ve lecture	

PO- Program outcome; LO – Learning outcome; Cognitive Level U – Understand; Ap- Apply, An- Analyze; K-Knowledge

Course Instructor :Ms. S. Virgin Jeba

Semester	: II
Name of the Course	: QUANTUM MECHANICS -II (Core - V)
Subject code	: PP2022

No. of hours per week	No. of credits	Total No. of hours	Marks
6	5	90	100

Objective

To develop several approximation methods, for bounds states and scattering states and apply them to illustrative problems.

СО	Upon completion of this course, students will be	PSO	CL
	able to:	addres	CL
		sed	

CO - 1	enumerate time independent perturbation theory and use approximation methods. (variation principle and WKB method) to solve simple problems (ground state helium, barrier penetration, etc)	PSO-1	К
CO - 2	analyze time dependent perturbation theory to discuss absorption and emission of radiation for harmonic perturbation.	PSO-6	An
CO - 3	interpret quantum theory of atomic and molecular structure.	PSO-4	U
CO -4	formulate Klein-Gordan and Dirac equations and discuss the applications. (particle in a Coulomb field, Spin of electron)	PSO-1	С

Crec	lit: 5	Total Hours: 90 (Incl. Seminar & Test)					
Unit	Modul	Topics	Lecture	Learning	Pedagogy	Assessment/	
	e	Topics	hours	outcome		Evaluation	
Ι	Approxi	mation Methods for Time Indepe	endent Pro	blems			
	1	Time independent perturbation	4	To understand	PPT,	Evaluation	
		theory: Basic concepts - Non-		the basic	Illustration and	through:	
		degenerate energy levels - first		concepts of	theoretical	Online quiz,	
		and second order		time	derivation		
				independent		Problem	
				perturbation		solving	
				theory.			
	2	Anharmonic oscillator – First-	3	To understand	Illustration,		
		order correction – Ground state		the ground	Theoretical	short	
		of Helium		state of	formulation	questions	
				Helium.	Problem		
					Solving	Descriptive	
	3	Effect of electric field on the	4	To analyze	Illustration,	answers	
		ground state and n=2 of		the effect of	Theoretical		
		hydrogen		electric field	formulation		
				on hydrogen.	Problem		
					Solving	Formative	
	4	Degenerate Energy Levels-	4	To analyze	PPT,	assessment	
		Stark effect in hydrogen		the splitting of	Theoretical		
		molecule-Spin-Orbit		energy levels	formulation		
		interaction.		in hydrogen	and Problem		
				molecule and	solving		
				spin-orbit			
				interaction.			
II	Approxi	mation Methods for Time Depen	dent Pertu	rbation Theory			

Modules Total Hours: 90 (Incl. Seminar & Test)

	1	Time dependent perturbation theory: First order perturbation – Harmonic perturbation – Transition to continuum states- Fermi Golden Rule	4	To understand the basic concepts and features related to time dependent perturbation. To understand	PPT Illustration, lecture, and Problem solving Descriptive	Evaluation through: Online quiz, short questions
		radiation – The Electromagnetic field		the absorption and emission of electromagneti c radiation.	lecture, comparative study	Descriptive answers Problem solving
	3	Hamiltonian operator- Electric dipole approximation- transition probability	4	To formulate the electric dipole approximation.	PPT, Theoretical formulation and Problem solving	Formative assessment
	4	Einstein's A and B coefficients – Selection rules- forbidden transitions.	3	To understand selection rules and forbidden transitions.	Illustration, Theoretical formulation and Problem solving	
III	Variatio	n and WKB Method				
	1	Variation method :Variational principle – Ground state of Helium and Deuteron	4	To solve the ground state of Helium and Deuteron.	Illustration, Theoretical formulation and Problem solving	Evaluation through: Online quiz,
	2	WKB Approximation : WKB method – Connection formula – Solution near a turning point – Validity of the WKB method	4	To analyze the WKB approximation.	PPT, Illustration,The oretical formulationand Problem solving	short questions Descriptive answers
	3	Barrier penetration – Alpha emission	4	To understand applications of WKB method.	Illustration, Theoretical formulation and Problem solving	Assignment Formative assessment
	4	Bound states in a potential well	3	To analyze the bound states in a potential well.	Illustration, Theoretical formulation comparative	

					study and Problem solving	
IV	Quantum	Theory of Atomic and Molecular S	tructure	1	0	
	1	Spin functions – Helium atom- Ground state- First excited state	3	To understand the concept of spin functions of two and three electrons.	Theoretical formulation and Problem solving	Evaluation through: Online quiz, short
	2	Central field approximation: - Determination of central field: Thomas Fermi method- Hartree-Fock approximations	5	To compare the central field approximations.	Theoretical formulation and Problem solving	questions Descriptive answers Problem
	3	Molecular Orbital method- Born-Oppenheimer approximation – MO treatment of hydrogen molecule Ion (H ₂ +)	5	To understand the basic concepts and features of molecular orbital method.	PPT Illustration, lecture, and Problem solving	solving Formative assessment
	4	Molecular orbital theory of Hydrogen molecule.	2	To analyze the molecular orbital theory of hydrogen molecule.	Descriptive lecture comparative study	
V Relativistic Quantum Mechanics & Quantization of the Field						
	1	Klein – Gordon Equation – Interpretation of the Klein- Gordon equation – Particle in a Coulomb field	4	To understand the basic concepts and features of a particle in a Coulomb field.	PPT Illustration, And Descriptive lecture	Evaluation through: Online quiz, short
	2	Dirac's equation for a free particle – Dirac matrices – Plane wave solution –Negative energy states – Spin of the Dirac particle	4	To understand the concept of Dirac particle.	Descriptive lecture and Theoretical formulation	questions Descriptive answers
	3	Magnetic moment of the electron – Spin-orbit interaction.	2	To apply the concept of magnetic	Descriptive lecture and Theoretical	Problem

			moment of electron	formulation	Solving
4	Quantization of the Field - Lagrangian equation- Hamiltonian equation- Schrodinger equation- Quantization of Electromagnetic fields	5	To understand the quantization of the field.	Descriptive lecture and Theoretical formulation	Formative assessment

PO- Program outcome; LO – Learning outcome; Cognitive Level : K- Knowledge; Analyze- An; U – Understand; Create – C.

Course Instructor: Dr. M.Priya Dharshini & Dr.S.Sonia

Semester II Major Core –VI Name of the Course : Condensed Matter Physics-I Subject code : PP2023

No of hours per week	No of credits	Total no of hours	Marks	
6	4	90	100	

Objective

To give strong foundation in the conceptual understanding of the development of solid state physics with appropriate theoreticalbackground.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	differentiate between different lattice types and explain the concepts of reciprocal lattice and crystal diffraction	PSO-4	Ap
CO- 2	analyze various crystal imperfections and ordered phases of crystal	PSO-2	An
CO- 3	explain the theory of lattice vibrations and analyze the thermal properties of solids	PSO-2	An
<u>CO</u> -4	formulate the problem of electrons in a periodic potential	PSO-1	U

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
	Crystal Phy	ysics:CrystalStructure				
		Lattice representation, Simple symmetry operations, Bravais Lattices, Unit cell, Wigner - Seitz cell		To acquire knowledge on space lattice and symmetry operations	Lecture Discussion with PPT illustration	Evaluation through Online quiz Class test Formative
		Miller planes and spacing, Characteristics of cubic cells, Structural features of NaCl, CsCl, Diamond, ZnS, Closepacking.		To be able to identify the crystal structure of materials	Lecture discussion with illustration, SLO	
		Crystal Binding: Interactions in inert gas crystals and cohesive energy, Lennard - Jones potential, Interactions in ionic crystals and Madelung energy		To understand the different kinds of bonding	Lecture discussion	
		valent bonding , Heitler - London Theory Hydrog en bonding , metallic bonding		To acquire knowledge on hydrogen, metallic and mixed bonding	Lecture discussion, PPT	
	Diffraction	of Waves and Particles	by Crystals			
		X-rays and their generation,		To know the principles	Lecture Discussion	Short test

ModulesCredits: 4Total contact hours: 90 (Including assignments and tests)

Moseley's law,	involved in X-	with PPT	Quiz
Absorption of X-	ray diffraction	Illustration	
rays (Classical			
theory), Absorption			Assignment
Edge, X-ray			_
diffraction			Formative
The Laue	To understand	Lecture	assessment I
equations,	the	discussion	
Equivalence of	equivalence of		
Bragg and Laue	Bragg and		
equations,	Laue		
Interpretation of	equations		
Bragg equation,	_		
Ewald construction			
Reciprocal lattice,	To be able to	Lecture	
Reciprocal lattice	draw the		
to SC, BCC and	reciprocal	Illustration	
FCC crystals,	lattice to SC,		
Importance	BCC and FCC		
properties of the	crystals		
Reciprocal lattice –			
Diffraction	To acquire		
Intensity, The	knowledge on		
Powder method,	Neutron		
Powder	Diffraction		
Diffractometer,	and		
The Laue method,	Electrondiffra		
The Rotating	ction		
Crystal method,			
Neutron			
Diffraction,			
Electrondiffraction			
Crystal Imperfections and Ordered I	PhasesofMatter	-	
Point	To evaluate	Lecture	
imperfections,	the different	with PPT	Evaluation
Concentrations of	imperfections	Illustration	through
Vacancy, Frenkel	involved in crystal		Online quiz
and Schottky	crystar		Assignment
imperfections			rissignment
Line Imperfections	To understand	Question-	Formative
Burgers Vector,	the concept	answer	assessment II
Presence of	dislocation	session	
dislocation, surface			
imperfections,		Lecture	
Polorans,Excitons.			-
Ordered phases of	To acquire	Lecture	

	matter:	knowledge on	discussion	
	Translational and	Ordered	with	
	orientation order -	phases of	illustration.	
	Kinds of liquid	matter	SLO	
	crystalline order -		~=	
	Quasi crystals -			
	Quasi ci ystais -			
LatticeDunan	supermuturty.			
LatuceDynan		TT 1 (1	T (
	Theory of elastic	1 o understand	Lecture	Evaluation
	vibrations in mono	the concept		through
	and diatomic	lattice	Discussion	Online quiz
	lattices, Phonons,	vibration and		
	Dispersion relations	derive the		
	Phonon momentum	dispersion		Formative
	I nonon momentum	relation		assessment II
	Heat Capacity:	To acquire		
	Specific heat	knowledge on	Lecture	
	capacity of solids.	phonon heat		
	Dulong and Petit's	canacity	Discussion	
	law Vibrational	capacity	Discussion	
	modes			
	Finstein model	To be able to	Brain	
	Density of modes in	determine the	storming	
	one and three	determine the	storning	
	dimensions Debye	density of	session.	
	Model of heat	states		
	capacity Anharmonic		Lecture	
	Effects: Explanation			
	for Thermal		Illustration	
	expansion			
	Conductivity and			
	resistivity Umklann			
	process			
TheorvofElec	trons			
	Energy levels and	To have clear	Lecture	Short test
	Fermi-Darac	idea about	with PPT	Short test
	distribution for a free	Formi Doroc	with I I	Formativa
	electron gas Periodic	remin-Darac		
	boundary condition	distribution for		assessment III
	and free electron gas	a free electron		
	in three dimensions	gas		
	Heat capacity of the	To acquire	Brain	
	electron gas. Ohm's	knowledge on	storming	
	law, Matthiessen's	Heat capacity	session	
	rule, Hall effect and	of the electron	50551011.	
	magnetoresistance.W	or the electron	Lastura	
	iedemann - Franz	gas and Bloch	Lecture	
	law, Nearly free	runction	711	
	electron model and		Illustration	

the origin and			
magnitude of energy			
gap, Bloch functions,			
Bloch theorem			
Motion of an	To acquire	Lecture	
electron in a periodic	knowledge on	with PPT	
potential, Kronig -	Motion of an		
Pennev model	electron in a	Illustration	
Approximate	periodic		
Approximate	notential		
solution near a zone	potentiai		
boundary, Metals,			
semiconductors and			
insulators			

PO- Program outcome; LO – Learning outcome; Cognitive Level U – Understand; Ap- Apply, An- Analyze; Course instructors: Dr.A.Lesly Fathima and Sr.S.Sebastiammal

Semester II Introductory Astronomy, Astrophysics & Cosmology (Elective – II (b)) Subject code: PP2025

No. of hours per week	No. of credits	Total no. of hours	Marks
6	5	90	100

Objectives:

The course enables the students to understand and realize the historical

evolution of Universe and principles involved in Astrophysics.

СО	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	perceive the historical evolution of solar system and universe.	PSO - 3	E
CO - 2	describe the principles of physics in the formation of astronomical objects like planets-satellites – asteroids and comets.	PSO - 1	U
CO - 3	gain experience with measurement techniques and equipment and develop the ability to assess uncertainties and assumptions.	PSO - 2	An
CO - 4	develop analytical skills and the ability to understand the astronomical situation.	PSO - 7	U
CO - 5	analyse the formation of binary stars, multiple stars, neutron stars and black holes.	PSO - 4	An
CO - 6	interpret the observations of galaxies, dark matter, quasars and pulsars.	PSO - 5	Е
CO - 7	achieve a good understanding of physical laws and principles.	PSO - 6	С

Credit:5		Total Hours:90 (Incl. Seminar & Test)					
Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assesment/E valuation	
Ι	History o	f Astronomy					
	1	Introductory History of Astronomy- Ptolemy"s Geocentric Universe- Copernicus" Heliocentric Universe	4	To understand basic concepts of Astronomy	Illustration and PPT	Evaluation through: quiz	
	2	Tycho Brahe and Galileo"s Observations-Kepler"s Laws ofPlanetary Motion-Newtonian Concept Of Gravity	3	To know the physical significance of Tycho Brahe and Galileo''s Observations and Laws Physics	Illustration, PPT	Formative assessment Evaluati on through t test Multiple	
	3	Highlights of Einstein"s Special and General Theory Of Relativity	4	To know the Highlights of Einstein ^s Special and General Theory of Relativity	Lecture Discussion	choice questions	
	4	Curved Space Time-Evidence of Curved Space Time- Bending Of Light- Time Dilation	4	To have a knowledge on Bending of Light- Time Dilation	Lecture Discussion and Group Discussion		
II	Stars & C	Galaxies					
	1	Stars and Galaxies-Distances- Trigonometric Parallax-Inverse Square Law	3	To understand the basic concepts of Stars and Galaxies	Illustration and PPT, Videos	Evaluation through: quiz Formative	
	2	Magnitude of Stars-Apparent Magnitude-Absolute Magnitude and Luminosity	4	Knowledge on Magnitude of Stars	Illustration and PPT, Videos	assessme nt	
	3	Color and Temperature- Composition of Stars-Velocity, Mass and Sizes of Stars-Types of Stars	4	To acquire knowledge on Color and Temperature-	Illustration , PPT, Lecture and Discussion	Evaluation through short answers	

Modules Total Hours:90 (Incl. Seminar & Te

				Types of Stars		
	4	TemperatureDependence-SpectralTypes-Hertzsprung-Russell(HR)Diagram-SpectroscopicParallax	4	To acquire a knowledge on Spectral Types and HR Diagram	Illustration , PPT, Lecture and Discussion	
III	Lives An	d Death of Stars				
	1	Stellar Evolution-Mass Dependence-Giant Molecular Cloud-Protostar-Main Sequence Star-Subgiant, Red Giant, Supergiant-Core Fusion	4	To understand the basic concepts of Stellar Evolution, Mass Dependence and Giant Molecular Cloud	Illustration , PPT, Lecture and Discussion	Evaluation through: quiz Formative assessme
	2	Red Giant (Or) Supergiant- Planetary Nebula(Or) Supernova-White Dwarfs- Novae And Supernovae- Neutron Stars-Pulsars	4	To acquire knowledge on Supernova- White Dwarfs- Novae And Supernovae- Neutron Stars- Pulsars	Illustration , PPT, Lecture and Discussion	nt. Evaluati on through: quiz,
	3	Black Holes-Detecting Black Holes The Sun- Its Size and Composition- Sun"s Interior Zones-Sun"sSurface	4	To understand the basic concept of Black Holes and The Sun	Illustration , PPT and Videos	
	4	Photosphere-Chromosphere- Corona-Sun's Power Source- Fusion Reaction Mechanism.	3	To be able to distinguish between Photosphere- Chromosphere and Corona	Illustration , PPT and Videos	
IV	Cosmolog	gy I				
	1	Introduction to Cosmology- Basic Observations and implications-Olbers' Paradox - Expanding Universe	4	To understand the basic concepts of Cosmology	Illustration, Theoretical formulation	Evaluation through: quiz,
	2	Gravitational Redshift-Doppler Effect-Hubble's Law and the	4	To understand and analyze the spectral shift	Illustration, Theoretical formulation	Problem solving

		Age of the Universe			and Problem solving	Theoretical	
	3	CosmologicalPrinciple-ThePerfectCosmologicalPrinciple-ObservationinterpretationofCosmicMicrowavebackgroundRadiation (CMBR)	5	To understand and analyze the various Cosmological Principles	Descriptive lecture and Theoretical formulation	derivatio n Formative assessme nt	
	4	Evidence Supporting the General Big Bang Theory- Salient features of Steady State Theory	2	To understand and analyse the Big Bang theory and the Steady State theory	Descriptive lecture and Theoretical formulation		
V	Cosmolo ₂ 1	gy II Fate of the Universe- Dependence on Mass (Curvature of Space)-Critical density-Open Universe-Closed Universe.	5	To understand basic concepts of the universe	Illustration, Theoretical formulation	Evaluation through: quiz, Problem solving Theoretical	
	2	Homogenous and Isotropic Freidman-Robertson-Walker Universes- Deriving the Geometry of the Universe from the Background Radiation	6	Understand and analyze the geometry of the universe	Illustration, and Problem solving	Formative nt	
	3	Flatness Problem-Horizon Problem-Inflation and its effect on the universe-The Cosmological Constant.	4	To understand and analyze the various cosmological	Illustration, Theoretical formulation		

PO- Program outcome; LO - Learning outcome; Cognitive Level R - Remember; U - Understand; Ap- Apply, An-

Analyze; E-Evaluate; C- Create Course Instructor:Dr.V.Shally&Ms.S.J.Jenepha Mary

Semester IV

Elective IV (a) : Nano Physics

Subject code: PP1744

Teaching Plan

			Lectu	ire	Learning]	Pedagogy	Assessment/val			
Unit	Modu	les Topics	Hour	S	outcomes			uation			
Ι		Nanomaterials Synthesis and Characterization									
	1	Nano structure	s –	4	Identify Na	no	Lecture				
		Synthesis of			structures	&	discussion	Evaluation			

				D: (1 : C		
		nanoparticles : Sol-gel		Biosynthesis of		Class test, oral
		processing – Arrested		nanomaterials		question
		precipitation –		using plants		Assignment
		Biosynthesis of				Ι
		nanomaterials using				
		plants				
	2	Carbon nanotubes -	3	Apply various	Derivation	
		Electronic structure of		Electronic	and group	
		carbon nanotubes -		structure of	discussion	
		Types of carbon		carbon		
		nanotubes		nanotubes		
	3	Synthesis of carbon	4	Discuss various	Derivation,	
		nanotubes: Laser		methods of	and group	
		method- CVD		synthesis of	discussion	
		(Pyrolysis of		carbon nanotubes		
		Hydrocarbons) – CVD				
		method on flat				
		surfaces - Solar				
		production of carbon				
		nanotubes – Properties				
		- Applications				
	1	Fullerana	4	Apply Fullerope	Derivation	
	-	Proportios of Fulloropo	-	Structural	and group	
		Structural		abaractorization	discussion	
		characterization: VDD		characterisation	ascussion	
		Characterisation: ARD			semmar	
		- Scanning Tunnening				
		Microscope (STM) –				
		Atomic Force				
		Microscope (AFM)				
		– Properties of				
		nanomaterials.				
		Structural				
		characterisation: XRD				
		– FTIR				
II		Quan	tum he	etrostructures		
	1	Novel phenomena -	4	Explain the in	Derivation	
		Heterostructure –		nanostructures	discussion	Evaluation
		Growth of		for different		Class test, oral
		heterostructure –		dimensions		question
		Molecular Beam				Assignment
		Epitaxy				
	2	Band alignment –	3	Define and	Derivation	I/II
		Quantum well –		derive	and group	
		Superlattice - Doped		Superlattice &	discussion	
		Heterostructures –		Doped	seminar	
		Quantum wells in		Heterostructures		
		heterostructures				
	3	Effective mass theory	4	Statement and	Derivation	

		in heterostructures –		proof of	and group	
		Application of		Effective mass	discussion	
		effective mass theory		theory	problem	
		in quantum wells in		-	solving	
		heterostructures				
	4	Applications of	4	Heterostructures	Derivation	
	-	heterostructures.	•	and its	and group	
		notorobractares.		annlications	discussion	
				applications	discussion	
III	Quan	tum well, quantum wires	s & qu	antum dots		
			r	1		
	1	Preparation of	4	Analyse	Derivation	Evaluation
		Quantum		Quantum	discussion	Class test, oral
		nanostructures - Size		nanostructures		question
		effects - Fermi gas and				Assignment
		density of states -				
		Calculation of the				II
		density of states				
	2	Quantum wire –	2	Define and	Derivation	
		Production. structure		derive	and group	
		and uses – Quantum		Production.	discussion	
		dot : production		structure and	seminar	
				uses of Quantum		
				nanostructures		
	3	Enitavially self	5	Define and	Derivation	
	5	assembled quantum	5	Derive	and group	
		dots Flectronic		Flectronic	discussion P	
		anargy states		anarov statas	DT	
		Application		ellergy states	ГІ	
	4	Application	1	Dofina dariva	L acture and	
	4	Quantum well inifared	4	Define, derive	Lecture and	
		detector – Quantum		and apply	group	
		well and quantum		Quantum well	alscussion	
		cascade laser –		and quantum	PPI	
		Quantum dot laser.		cascade laser		
				&Quantum dot		
				laser.		
IV	Magn	eto electronics and appli	cation	is of nanotechnolog	<u>sy</u>	
	1	Nano crystalline soft	1	Discuss different	Derivation	Evaluation
	1	magnetic materials –	-	types of Nano	discussion	Class test oral
		Permanent magnet		crystalline soft	discussion	question
		materials Preparation		magnetic		Assignment
		of magnetic		magnetic		H SSIgnment
		nonometerials		materials		11/111
	2	Super remains	4	Define and	Derivation	
	2	Super paramagnetism -	4	derive Coulomb	Derivation	
		Coulomb blockade –		derive Coulomb	and group	
		Single electron		blockade and its	discussion,	

	transistor - Spintronics			applications	PPT	
	3	Giant	3	Define and	Derivation	
		magnetoresistance -		Derive different	and group	
		Quantum Hall effect -		types of Giant	discussion	
		Quantum spin Hall		magnetoresistanc	seminar	
		effect		e		
	4	Fractional quantum	4	Applications of	Lecture and	
		Hall effect -		nanotechnology	group	
		Applications of			discussion	
		nanotechnology.			PPT	
V		Α	pplicat	ions of Nanomater	ials	
	1	Nanoelectronics	4	Analyse	Discussion	Evaluation
		– Introduction –		Fundamental	PPT	Class test, oral
		Sensors –		Nano Sensors		question
		MEMS/NEMS				Assignment
	2	Solar cells –	4	Analyse	group	III
		Displays –		classification	discussion,	
		Optical switches		Solar cells	PPT	
	3	Graphene	3	Explain	Derivation	
		electronics –		Graphene	and group	
		Biosensors –		electronics	discussion	
		Biomarkers and			seminar	
		Bioimaging				
	4	Targeted drug	4	Define, derive	Derivation	
		delivery –		and apply	and group	
		Nanorobots.		Nanorobots	discussion,	
					PPT	

Course instructor: Dr. C. Nirmala Louis Head of the Department: Dr. S. Mary Delphine

Semester IV Material Science Subject Code: PP1741

Teaching Plan

Unit	Modules			Topic	8	Lecture hours		Learning outcome	Pedagogy	Assesment/E valuation
Ι	Pha	Phase diagram								
	1	Phase system	rule- Is	Single	component	2	To u conc of m	nderstand basic epts of phases aterials.	Illustration and theoretical explanation	Evaluation through: quiz,
	2	Binary Micros Coolin	ary Phase diagrams- crostructural Changes during oling		2	To u micr chan mate	nderstand the ostructural ges of prials.	Illustration, Theoretical explanation	Problem solving	
	3	The le diagram Time s	ver rule- ns- Phase cale for p	Application transforr transforr	ons of phase nations- nges	4	To a trans	nalyze phase formations.	Analysis and Theoretical explanation	short questions

II	4 Ela	The growth and the overall transformation kinetics of nucleation– Applications	4	To understand the process of nucleation.	Theoretical explanation and Problem solving	Descriptive answers Formative assessment
	1	Atomic model of elastic behavior	3	To understand the basic concepts of elastic behavior.	PPT Illustration, Lecture.	Evaluation through: quiz,
	2	The modulus as a parameter in Design	3	To understand the importance of elasticity in designing structures.	Descriptive lecture, comparative study.	short questions
	3	Rubber-like elasticity-Anelastic	3	To understand	Theoretical	Descriptive answers
	4	Relaxation Processes- Viscoelastic behavior: Spring-Dashpot models	3	To analyze relaxation processes in materials.	Illustration, Theoretical explanation	Problem solving Formative assessment
III	Imp	perfections		T		
	1	Crystal imperfections- Point imperfections	4	To interpret crystal imperfections.	Illustration, Theoretical explanation	Evaluation through: quiz, short
	2	The geometry of dislocations- other properties of dislocations	4	To understand properties of dislocations	Illustration, Theoretical explanation	questions Descriptive
	3	surface imperfections	4	To analyze surface imperfections	Illustration, Theoretical explanation, comparative study	answers Assignment on applications Formative assessment
IV	Oxi	dation, Corrosion and other deformat	tion o	f materials		
	1	Mechanisms of oxidation-oxidation	1	To understand the basic concepts and	PPT Illustration,	Evaluation through: quiz,

2	resistant materials the principles of corrosion-	3	features of oxidation resistant materials. To understand the	And Descriptive lecture Descriptive	short questions
	protection against corrosion		concept of corrosion.	Theoretical explanation	answers
3	plastic deformation- the tensile stress- stress-strain curve- plastic deformation by slip creep	4	To apply deformation theory to analyze the tensile stress and plastic deformation.	Descriptive lecture and Theoretical explanation	Assignment on applications.
4	mechanisms of creep-creep resistant materials- Ductile fracture- Brittle fracture- Methods of protection against fracture.	4	To understand methods of protection against fracture	Descriptive lecture and Theoretical explanation	Formative assessment

Course instructor: Ms. M. Abila Jeba Queen He

Head of the Department: Dr. S. Mary Delphine

Semester IV Molecular Spectroscopy Subject Code: PP1743 **Teaching Plan**

Unit	Modules		Topics	Lect hou	ture rs	Learning outcome	Pedagogy	Assessment/ Evaluation	
Ι	Microv	wav	e spectroscopy						
	1	Cl mo rao mo	Classification of molecules - Interaction of radiation with rotating molecule		To un classi mole intera	nderstand the ification of cules and their actions.	Lecture Discussion with PPT illustration	Evaluation through short test	
	2	Ro dia Iso rot Int lin	otational spectra of rigid atomic molecules – otope effects in cational spectra – censity of rotational es	4	To ac know rotati of rig mole	equire eledge on the onal spectra diatomic cules	Lecture videos PPT	Multiple choice questions Assignment Seminar	
	3	N Vi eff mo	on-rigid rotator – brational excitation fects – Symmetric top blecules	3	To know the principles of Non- rigid rotator and Symmetric top molecules		Lecture discussion	Formative assessment I	
	4	Μ	icrowave spectrometer –	3	To id	entify the	PPT		

		Information derived from		principles and	Illustration	
		rotational spectra.		working of	,	
				microwave	Descriptiv	
				spectrometer	e lecture	
II	Infrai	ed spectroscopy				
	1	Vibrational energy of a diatomic molecule – Infrared spectra – Infrared selection rules	4	To understand infrared spectra and acquire knowledge or selection rules	l Lecture l Illustratio n videos PPT	Short test Quiz Assignment
	2	Vibrating diatomic molecule – Diatomic vibrating rotator – Asymmetry of rotation	4	To acquire knowledge on diatomic vibrating rotator and asymmetry of rotation.	Lecture discussio n videos PPT	Formative assessment I
	3	Vibration band – Vibrations of polyatomic molecules – Rotation vibration spectra of polyatomic molecules	4	To derive equations for rotation- vibration spectra of polyatomic molecules.	Lecture discussio n videos PPT	
	4	IR spectrophotometer – Instrumentation - Sample handling techniques – Fourier transform infrared spectroscopy – Applications (any two)	2	To understand the working of IR spectrophotometer and discuss its applications.	Lecture Illustratio n videos PPT	
III	Rama	n spectroscopy				
	1	Theory of Raman scattering – Rotational Raman spectra	5	To acquire knowledge on Raman scattering	Lecture with PPT Illustration	Assignment Seminar
						Formative assessment

	2	Vibrational Raman spectra – Mutual exclusion principle	3	To understand the concept of vibrational Raman spectra and Mutual exclusion principle	Question- answer session Lecture	II
	3 Raman spectrometer – Polarization of Raman scattered light - Structure determination using IR and Raman spectroscopy.		5	To understand the working of Raman spectrometer and differentiate IR and Raman spectroscopy.	Lecture with PPT Illustration	
IV	Elect	onic spectroscopy		I	1	I
	1	Introduction – Vibrational coarse structure – Vibrational analysis of band systems	3	To understand the concept of vibrational analysis of band systems	Lecture Discussion videos ppt	Formative assessment II
	2	Progressions and sequences – Information derived from vibrational analysis		To distinguish progressions and sequences	Lecture Discussion videos	
	3	Frank – Condon principle – Intensity of vibrational electronic spectra	4	To have a knowledge on Frank Condon principle and intensity of vibrational spectra.	Lecture with PPT Illustration	

Course instructor: Dr. Theresiamma Chacko Head of the Department: Dr. S. Mary Delphine